FOR PUSH-TO OPERATION OF YOUR TELESCOPES

ROBERT HORTON
DECEMBER 7, 2020

FIRST: COORDINATES IN THE SKY

- Celestial objects are typically located by their Right Ascension (RA) and Declination (Dec)
- Similar to locating a position on Earth with Longitude and Latitude
- Right Ascension is measured in Hours:Minutes:Seconds because it is tied to the daily rotation of the Earth
- Declination is measured in Degrees away from the Celestial Equator, + for North, - for South
- Positions of celestial objects, from your location on Earth, can also be represented by Altitude and Azimuth
- Altitude (aka Elevation) is the number of degrees the object appears above your local horizon
- Azimuth is the clockwise (Eastward) number of degrees from True North

- The positions of the stars are dictated by your location on Earth and the current date and time
- Over time, the stars appear to rotate around the North Celestial Pole due to Earth's rotation
- So, the primary adjustment to either coordinate system is to account for the passage of time

https://photographingspace.com/how-to-maintain-star-colour-in-your-star-trail-images/

WHAT ARE SETTING CIRCLES ?

- The next step after "Star Hopping" to aid in finding celestial objects
- Analog Setting Circles are placed on each axis of a telescope mount
- Right Ascension axis divided into 24 hours (360 degrees for Azimuth axis)
- Declination axis divided into $+/-90$ degrees (also Altitude axis)
- These circles can be turned to "Set" them to the telescope's current sky position
- Once "Set" you can find new objects by moving the scope to their catalog positions
- R.A. circles are typically driven by the clock drive to maintain their sky position over time

WHAT ARE DIGITAL SETTING CIRCLES (DSC)?

- Mount an optical shaft Encoder on each axis in place of the analog setting circles
- Divides the rotation of the axis into some number of "ticks" or "pulses"
- Count the "ticks" to tell how far the axis has turned
- Example: 10,000 tick Encoder divides a full 360 rotation into 2.16 arc minute increments
- A Computer converts and displays the Encoder values to RA/Dec (or Alt/Azi)

http://www.bogan.ca/astro/telescopes/digtcrcl.html

MANY COMMERCIAL DSC UNITS

- AstroSystems SkyCommander
- Celestron Advanced Astro Master
- Lumicon Sky Vector II
- Astro Devices Nexus DSC
- Losmandy DSC
- Argo Navis
- Meade Magellan I
- TScope DSC

RJ11 RS232 JACK

WHY YET ANOTHER DSC ? (YA-DSC)

- Many DSCs are no longer manufactured - GoTo systems are king now
- The Used market is still relatively pricey (\$500)
- Older computer technology can show performance issues with high tick count encoders
- It's a chance to learn more about Astronomical Computing
- VAS's 14 -Irene is already set up to accept the attachment of the Encoders
- Avoids the complexity, baggage, and setup needs of a full laptop computer system
- Because COVID-19 has given me even more time to mess around in retirement !

- Teensy 3.2 Microcomputer \$19.80
- Introduced in 2014
- 32-bit ARM Cortex-M4 running at 74 MHz
- 256 KB Flash, 64 KB RAM, 2 KB EEPROM
- 34 Digital I/O (3.3 Volt, 5 Volt tolerant)
- 21 Analog Inputs, 1 Analog Output, 12-bits
- Real Time Clock, 12 Timers
- USB, SPI, Serial, I2C, CAN, I2S Communication
- Arduino compatible IDE (C, C++)
- www.pirc.com
- 2 Line by 20 Character Serial LCD Display $\$ 14.95$
- 24 tick Rotary Encoder Knob (+RGB LED) \$4.50
- CR2032 Battery + Holder (for RTC) \$1.50
- Misc. Components, Sockets \& Connectors \$1.00
- www.sparkfun.com www.adafruit.com
- Optical Shaft Encoders (10000 tick) $\$ 83$ each
- www.usdigital.com

THE HARDWARE...

C. .

[0]	Dl	0 C	cb	88	
-190000000					
O	O				
0	${ }^{\circ} \mathrm{O}$				
gigoly					
- obran					

THE HARDWARE...

THE SOFTWARE.

- Sky \& Telescope's Astronomical Computing column (1980s-1990s)
- Programs to perform various astronomy related tasks, written in Basic
- "Where is it in the Sky", June 1984
- "A Computer Assault on Kepler's Equation", August 1985
- "A New Concept in Computer-Aided Telescopes", (Taki) February 1989
- Practical Astronomy with your Calculator, Peter Duffett-Smith (1982)
- Celestial Basic, Eric Burgess (1982)
- Microcomputers in Astronomy, Russell M. Genet (1983)
- Astronomy with your Personal Computer, Peter Duffett-Smith (1985)
- The Internet (Google, GitHub)
- Palm DSC, David Ek's DSC, etc...
- Arduino Libraries
- Encoder, TimeLib, EEPROM, Ephemeris

EXAMPLE CALCULATION FLOW

- Given: Latitude, Longitude, Calendar Date, Local Time and Time Zone
- Calculate Julian Date from the Calendar Date (S\&T August 1991)
- Calculate Greenwich Mean Sidereal Time (GMST) from Julian Date (S\&T June 1984)
- Calculate Local Sidereal Time (LST) from GMST and Longitude
- Given: Object Coordinates - Right Ascension (RA) and Declination (DEC)
- Calculate Local Hour Angle (LHA) from LST and RA
- Using Spherical Trigonometry, Calculate Altitude (ALT) and Azimuth (AZI) from LHA, DEC and LAT
- Display Current Telescope ALT \& AZI and Object's ALT \& AZI
- Push the Telescope until the two coordinates match
(2) TeensyDSC - menu.ino | Arduino 1.8.12

File Edit Sketch Tools Help

TeensyDSC SimpleDSC
67 void displayDateTime (void)
68 \{
while (!digitalRead(buttonPin)) \{
gotoLCD (0) ;
Seriall.printf(" \% $04 \mathrm{~d} / \mathrm{8} 02 \mathrm{~d} / \mathrm{\varepsilon} 02 \mathrm{~d}$
$\% 04 \mathrm{~d} / \frac{\%}{8} 02 \mathrm{~d} / \frac{2}{8} 02$
", year(), month(), day());
Seriall.printf(" \%02d:\%02d:\%02d ", hour(), minute(), second());
delay (100) ;
while (digitalRead(buttonPin)):
7 \}
78
9 void displaySidereal (void)
80 \{
long J;
double F;
double GMST, LST;
double hrs, mins, secs;
while (!digitalRead (buttonPin)) (
double dhms $=$ day () + (hour () - EEdata.tzOffset) $/ 24.0+$ minute () $/ 1440.0+$ second () $/ 86400.0$; calendarToJulian(year(), month(), dhms, \&J, \&F);
julianToGMST(J, F, \&GMST);
mins $=\operatorname{modf}($ GMST, shrs $) * 60.0$;
secs $=\operatorname{modf}($ mins, s mins $) * 60.0$;
gotoLCD (0); Seriall.printf("GMST: \%02d:\%02d:\%02d ", int(hrs), int(mins), int(secs)); LST $=$ GMST + EEdata. longitude/15.0;
if (LST<0.0) LST $+=24.0$;
mins $=\operatorname{modf}(L S T, ~ s h r s){ }^{*} 60.0$;
secs $=$ modf(mins, smins) * 60.0;
gotoLCD (16); Serial1.printf("LST: \%02d:\%02d: \% 02d ", int(hrs), int(mins), int(secs)); delay (100);
\}
while (digitalRead (buttonPin));
101 \}

Simple One-Handed Knob Control... Twist \& Press

- Main Menu
- Bright Stars (39)
- Planets (7)
- Messier Catalog (109)
- Caldwell Catalog (í08)
- Double Stars (108)
- Target RA \& Dec
- Show Date \& Time
- Show Sidereal
- Show RA \& Dec
- Show Alt \& Azi (***)
- Goto Setup Menu
*** Coordinates sent on USB Serial to Computer/Laptop for use with Planetarium programs like Stellarium
- Setup Menu
- Align to Star \#1
- Align to Star \#2
- Set Date \& Time
- Set Time Zone
- Set Location (Latitude/Longitude)
- Encoder Resolution/Direction
- Init to NCP
- Tracking Mount
- LCD Brightness
- Mount Error Z1
- Mount Error Z2
- Mount Error Z3
- Goto Main Menu

CORRECTIONS AND ADJUSTMENTS

- Precession: 50.29" per year (S\&T October 1991)
- Atmospheric Refraction: $\sim 34^{\prime}$ of altitude at the horizon (S\&T July 1986)
- Others...
- Annual Aberration: 20"
- Nutation: 17"
- Solar/Stellar Parallax: < 10 "
- Telescope \& Mount Mechanical Corrections
- Polar or Azimuth Axis Misalignment
- Non-Perpendicular Axes
- Collimation Errors
- Tube \& Mount Flexure
- Gearing Errors (Backlash \& Periodic)

- Field Rotation: (S\&T September 1992)

SOME MORE LINKS...

- Positions in the Sky
- Sidereal Time Calculator
- Project Pluto: Astronomy C/C++ Source Code
- Taki: Equations for Pointing a Telescope
- Arduino-DSC (Github)
- Teensy-DSC (Github)
- ESP-DSC (Github)
- The Ek's Files: Build your own Digital Setting Circles
- Gigi: gDSC : Bluetooth Ek DSC

DEMO TIME...

